Synchronization of Networks of Nonlinear Dynamical Systems

Kim Listmann

GRK 1362: Cooperative, Adaptive and Responsive Monitoring in Mixed Mode Environments
Challenges in Control of Networked Systems

Complexity Cube [Allgöwer et al., 2009]

Problem

Given a group of agents with individual nonlinear dynamics, find control \(u \) such that the state difference \(\|x_i - x_j\| \rightarrow 0 \) for all agents in the group as \(t \rightarrow \infty \).
Outline

1. Introduction to Synchronization

2. Preliminaries
 ▶ Graph Theory
 ▶ System Theory

3. Synchronization of Nonlinear Systems
 ▶ Control Design
 ▶ Examples

4. Conclusion
The Synchronization Problem

- Consider group of three \((i = 1, 2, 3)\) agents each with dynamics
 \[
 \dot{x}_i = u_i, \quad x_i \in \mathbb{R}^2
 \]

- Synchronization means
 \[
 \lim_{t \to \infty} \|x_i - x_j\| = 0, \quad \forall \ i, j \neq i
 \]

- Intuitive nearest neighbor strategy
The Synchronization Problem

- Consider group of three \(i = 1, 2, 3 \) agents each with dynamics
 \[
 \dot{x}_i = u_i, \quad x_i \in \mathbb{R}^2
 \]

- **Synchronization** means
 \[
 \lim_{t \to \infty} \|x_i - x_j\| = 0, \quad \forall \ i, j \neq i
 \]

- Intuitive **nearest neighbor** strategy
 \[
 u_1 = x_2 - x_1
 \]

 \[
 \Rightarrow x_1 \text{ converges to } x_2
 \]

 \[
 \dot{x}_1 + x_1 = x_2
 \]
Consider group of three \((i = 1, 2, 3)\) agents each with dynamics
\[
\dot{x}_i = u_i, \quad x_i \in \mathbb{R}^2
\]

Synchronization means
\[
\lim_{t \to \infty} \|x_i - x_j\| = 0, \quad \forall \ i, j \neq i
\]

Intuitive nearest neighbor strategy
\[
u_2 = x_3 - x_2
\]

\(\Rightarrow \) \(x_2\) converges to \(x_3\)
\[
\dot{x}_2 + x_2 = x_3
\]
The Synchronization Problem

- Consider group of three ($i = 1, 2, 3$) agents each with dynamics
 \[\dot{x}_i = u_i, \quad x_i \in \mathbb{R}^2 \]

- **Synchronization** means
 \[\lim_{t \to \infty} \|x_i - x_j\| = 0, \quad \forall \ i, j \neq i \]

- **Intuitive nearest neighbor** strategy
 \[u_3 = x_2 - x_3 \]

\[\Rightarrow \quad x_3 \text{ converges to } x_2 \]

\[\dot{x}_3 + x_3 = x_2 \]
The Synchronization Problem

- Consider group of three \((i = 1, 2, 3)\) agents each with dynamics
 \[\dot{x}_i = u_i, \quad x_i \in \mathbb{R}^2 \]

- Synchronization means
 \[\lim_{t \to \infty} \|x_i - x_j\| = 0, \quad \forall \ i, j \neq i \]

- Intuitive nearest neighbor strategy
 \[u_3 = x_2 - x_3 \]

 \(\Rightarrow\) \(x_3\) converges to \(x_2\)

 \[\dot{x}_3 + x_3 = x_2 \]
Analysis of the Synchronization Problem

- Controls $u_i = x_j - x_i$ depend on information flow between agents i and j

\Rightarrow Synchronization implies communication among group members

- Rewrite the result using $x = [x_1^T, x_2^T, x_3^T]^T$

$$\dot{x} = \begin{pmatrix} -x_1 + x_2 \\ -x_2 + x_3 \\ -x_3 + x_2 \end{pmatrix} = \begin{pmatrix} -I_{2\times2} & I_{2\times2} & 0_{2\times2} \\ 0_{2\times2} & -I_{2\times2} & I_{2\times2} \\ 0_{2\times2} & I_{2\times2} & -I_{2\times2} \end{pmatrix} x = -(L \otimes I_{2\times2}) x$$

\Rightarrow Eigenstructure of L determines system behavior [Fax & Murray, 2004]

- Synchronization of nonlinear dynamic systems (unmanned vehicles)
- Provably correct synchronization for such dynamics
- Minimal conditions for synchronization
Analysis of the Synchronization Problem

- Controls $u_i = x_j - x_i$ depend on information flow between agents i and j

\implies Synchronization implies communication among group members

- Rewrite the result using $x = [x_1^T, x_2^T, x_3^T]^T$

$$\dot{x} = \begin{pmatrix} -x_1 + x_2 \\ -x_2 + x_3 \\ -x_3 + x_2 \end{pmatrix} = \begin{pmatrix} -I_{2\times2} & I_{2\times2} & 0_{2\times2} \\ 0_{2\times2} & -I_{2\times2} & I_{2\times2} \\ 0_{2\times2} & I_{2\times2} & -I_{2\times2} \end{pmatrix} x = -(L \otimes I_{2\times2}) x$$

\implies Eigenstructure of L determines system behavior [Fax & Murray, 2004]

- Synchronization of nonlinear dynamic systems (unmanned vehicles)
- Provably correct synchronization for such dynamics
- Minimal conditions for synchronization
Directed Graphs - Digraphs

- Model communication network as digraph G
- Vertices = agents and edges = info flow
- Associated Laplacian matrix

\[
L = D_{in} - A^T = \begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{pmatrix}
\]

- Laplacian is nonnegative matrix
- Smallest eigenvalue λ_0 always zero
- Associated eigenvector $v_0 = 1^T$
- [Ren & Beard, 2007] λ_0 simple if G
 1. directed spanning tree or
 2. strongly connected

\[
\dot{x} = -(L \otimes I_2)x \\
\Rightarrow \text{span}\{1\} \in \ker(L) \\
\Rightarrow \text{synchronization}
\]
Directed Graphs - Digraphs

- Model communication network as digraph G
- Vertices = agents and edges = info flow
- Associated Laplacian matrix

$$L = D_{in} - A^T = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- Laplacian is nonnegative matrix
- Smallest eigenvalue λ_0 always zero
- Associated eigenvector $v_0 = 1^T$
- [Ren & Beard, 2007] λ_0 simple if G
 1. directed spanning tree or
 2. strongly connected

$$\dot{x} = -(L \otimes I_2)x$$
$$\Rightarrow \text{span}\{1\} \in \ker(L)$$
$$\Rightarrow \text{synchronization}$$
Directed Graphs - Digraphs

- Model communication network as digraph G
- Vertices = agents and edges = info flow
- Associated Laplacian matrix

$$L = D_{in} - A^\top = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- Laplacian is nonnegative matrix
- Smallest eigenvalue λ_0 always zero
- Associated eigenvector $v_0 = 1^\top$
- [Ren & Beard, 2007] λ_0 simple if G
 1. directed spanning tree or
 2. strongly connected

\[\dot{x} = - (L \otimes I_2) x \]
\[\Rightarrow \text{span}\{1\} \in \ker(L) \]
\[\Rightarrow \text{synchronization} \]
Stability of Nonlinear Systems

Theorem (Lyapunov, 1892)

Given $\dot{x} = f(x)$ with equilibrium $x_e = 0$. Let $V(x)$ be a positive definite function, then x_e is asymptotically stable if $\dot{V}(x) < 0$ for all $x \neq 0$.

+ Stability properties without solving the ODE
 - No systematic method to find $V(x)$

Extension to synchronization [Moreau, 2004]

- Equilibrium $x_e = \Delta x = x_i - x_j$
- Rewrite group dynamics using Δx
- Show that $\dot{V}(\Delta x) < 0$ for all $\Delta x \neq 0$
Theorem (Lyapunov, 1892)

Given \(\dot{x} = f(x) \) with equilibrium \(x_e = 0 \). Let \(V(x) \) be a positive definite function, then \(x_e \) is asymptotically stable if \(\dot{V}(x) < 0 \) for all \(x \neq 0 \).

+ Stability properties without solving the ODE
 – No systematic method to find \(V(x) \)

Extension to synchronization [Moreau, 2004]

- Equilibrium \(x_e = \Delta x = x_i - x_j \)
- Rewrite group dynamics using \(\Delta x \)
- Show that \(\dot{V}(\Delta x) < 0 \) for all \(\Delta x \neq 0 \)
Passivity - An Input-Output Property

- Classical control theory: Input-output descriptions in frequency domain
- Passivity extends this concept to the time domain

Definition (Passivity)
A dynamics $\dot{x} = f(x) + G(x)u$ with output $y = h(x)$ is passive if there exist positive semidefinite functions $V(x)$ and $S(x)$ such that $\dot{V}(x) = u^T y - S(x)$.

- Passive systems never gain energy

\[u^T y \geq \dot{V}(x) \]

energy put in \hspace{1cm} energy stored

- Find input-output pair and storage function that passifies dynamics

\Rightarrow Stability analysis with $V(x)$ as Lyapunov function
Passivity-Based Coordination

- Passivity useful for coordination [Arcak, 2007], [Chopra & Spong, 2006]
- Consider agents with more complex dynamics
 \[\dot{x}_i = u_i, \quad y_i = x_i + \dot{x}_i, \quad \text{with} \quad x_i \in \mathbb{R}^2 \]
- Assign preliminary damping \(u_i = -\dot{x}_i + \tau_i \)
- System passive with storage function \(V_i(x_i, \dot{x}_i) = \frac{1}{2} y_i^T y_i \), output \(y_i \), input \(\tau_i \)
- Prove synchronization using
 \[
 V(x, \dot{x}) = \sum_{i=1}^{N} V_i \quad \text{and} \quad \tau_i = -\sum_{j \in \mathcal{N}_i} (y_i - y_j)
 \]
 \[
 \dot{V}(x, \dot{x}) = -S(x, \dot{x}) - y^T (L \otimes I_2) y \leq 0
 \]
 \[
 \geq 0 \quad \geq 0? \]
- Synchronization if \(L = L^T \) and \(L \succeq 0 \) ⇒ Digraph \(\mathcal{G} \) must be balanced
Passivity-Based Coordination

- Passivity useful for coordination [Arcak, 2007], [Chopra & Spong, 2006]
- Consider agents with more complex dynamics
 \[\dot{x}_i = u_i, \quad y_i = x_i + \dot{x}_i, \quad \text{with} \quad x_i \in \mathbb{R}^2 \]
- Assign preliminary damping \(u_i = -\dot{x}_i + \tau_i \)
 \Rightarrow\text{ System passive with storage function } V_i(x_i, \dot{x}_i) = \frac{1}{2} y_i^\top y_i, \text{ output } y_i, \text{ input } \tau_i
- Prove synchronization using
 \[V(x, \dot{x}) = \sum_{i=1}^{N} V_i \quad \text{and} \quad \tau_i = -\sum_{j \in N_i} (y_i - y_j) \]
 \Rightarrow\text{ } \dot{V}(x, \dot{x}) = -S(x, \dot{x}) - y^\top (L \otimes I_2) y \leq 0 \]
 \[\geq 0 \quad \geq 0? \]
- Synchronization if \(L = L^\top \) and \(L \succeq 0 \) \Rightarrow \text{ Digraph } G \text{ must be balanced}
Passivity-Based Coordination

- Passivity useful for coordination [Arcak, 2007], [Chopra & Spong, 2006]
- Consider agents with more complex dynamics
 \[\dot{x}_i = u_i, \quad y_i = x_i + \dot{x}_i, \quad \text{with} \quad x_i \in \mathbb{R}^2 \]
- Assign preliminary damping \(u_i = -\dot{x}_i + \tau_i \)
 \[\Rightarrow \text{System passive with storage function} \quad V_i(x_i, \dot{x}_i) = \frac{1}{2} y_i^\top y_i, \quad \text{output} \quad y_i, \quad \text{input} \quad \tau_i \]
- Prove synchronization using
 \[V(x, \dot{x}) = \sum_{i=1}^{N} V_i \quad \text{and} \quad \tau_i = -\sum_{j \in N_i} (y_i - y_j) \]
 \[\Rightarrow \dot{V}(x, \dot{x}) = -S(x, \dot{x}) - y^\top (L \otimes I_2) y \leq 0 \]
 \[\geq 0 \quad \text{and} \quad \geq 0? \]
- Synchronization if \(L = L^\top \) and \(L \succeq 0 \) \(\Rightarrow \) Digraph \(G \) must be balanced
Consider agent dynamics in strict feedback form

\[\dot{\xi}_{0,i} = a_{0,i}(\xi_{0,i}) + B_{0,i}(\xi_{0,i})\xi_{1,i} \]
\[\dot{\xi}_{1,i} = a_{1,i}(\xi_{0,i}, \xi_{1,i}) + B_{1,i}(\xi_{0,i}, \xi_{1,i})\xi_{2,i} \]
\[\vdots \]
\[\dot{\xi}_{k,i} = a_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i}) + B_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i})u_i \]

Problem

Can we find control \(u_i \) to synchronize the group using results from passivity-based coordination?
Synchronization of Nonlinear Systems

System Description

Consider agent dynamics in strict feedback form

\[
\begin{align*}
\dot{\xi}_{0,i} &= a_{0,i}(\xi_{0,i}) + B_{0,i}(\xi_{0,i})\xi_{1,i} \\
\dot{\xi}_{1,i} &= a_{1,i}(\xi_{0,i}, \xi_{1,i}) + B_{1,i}(\xi_{0,i}, \xi_{1,i})\xi_{2,i} \\
&\quad \vdots \\
\dot{\xi}_{k,i} &= a_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i}) + B_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i})u_i
\end{align*}
\]

Problem
Can we find control \(u_i\) to synchronize the group using results from passivity-based coordination?
Synchronization of Nonlinear Systems
System Description

Consider agent dynamics in strict feedback form

\[
\begin{align*}
\dot{\xi}_{0,i} &= a_{0,i}(\xi_{0,i}) + B_{0,i}(\xi_{0,i})\xi_{1,i} \\
\dot{\xi}_{1,i} &= a_{1,i}(\xi_{0,i}, \xi_{1,i}) + B_{1,i}(\xi_{0,i}, \xi_{1,i})\xi_{2,i} \\
&\vdots \\
\dot{\xi}_{k,i} &= a_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i}) + B_{k,i}(\xi_{0,i}, \ldots, \xi_{k,i})u_i
\end{align*}
\]

Problem
Can we find control \(u_i \) to synchronize the group using results from passivity-based coordination?
Recursive design

- Use every $\xi_{m,i}, m = 1, \ldots, k$ as virtual control $\alpha_{m,i}$ stabilizing the dynamics
- Introduce error $y_{m,i} = \xi_{m,i} - \alpha_{m,i}$ due to virtuality
- Construct output $y_{k,i}$ rendering the dynamics passive

1. Consider the first subsystem
 \[\dot{\xi}_{0,i} = a_{0,i} + B_{0,i} \xi_{1,i} \]
 - Choose Lyapunov function $V_{0,i}$
 - Design $\xi_{1,i} = \alpha_{1,i}$ to achieve asymptotic stability
 - Introduce $y_{1,i} = \xi_{1,i} - \alpha_{1,i}$
Synchronization of Nonlinear Systems
Control Design

Recursive design

- Use every $\xi_{m,i}, m = 1, \ldots, k$ as virtual control $\alpha_{m,i}$ stabilizing the dynamics
- Introduce error $y_{m,i} = \xi_{m,i} - \alpha_{m,i}$ due to virtuality
- Construct output $y_{k,i}$ rendering the dynamics passive

2. Extend system to

$$\dot{\xi}_{0,i} = a_{0,i} + B_{0,i}(y_{1,i} + \alpha_{1,i})$$
$$\dot{y}_{1,i} = a_{1,i} - \dot{\alpha}_{1,i} + B_{1,i}\xi_{2,i}$$

- Choose Lyapunov function $V_{1,i} = V_{0,i} + \frac{1}{2}y_{1,i}^T y_{1,i}$
- Design $\xi_{2,i} = \alpha_{2,i}$ to achieve asymptotic stability
- Introduce $y_{2,i} = \xi_{2,i} - \alpha_{2,i}$
Synchronization of Nonlinear Systems
Control Design

Recursive design

- Use every $\xi_{m,i}, m = 1, \ldots, k$ as virtual control $\alpha_{m,i}$ stabilizing the dynamics
- Introduce error $y_{m,i} = \xi_{m,i} - \alpha_{m,i}$ due to virtuality
- Construct output $y_{k,i}$ rendering the dynamics passive

Finally, we have

$$
\dot{y}_{k,i} = a_{k,i} - \dot{\alpha}_{k,i} + B_{k,i}u_i
$$

- Choose Lyapunov function $V_{k,i} = V_{k-1,i} + \frac{1}{2}y_{k,i}^\top y_{k,i}$
- Design $u_i = \beta_i + \tau_i$ to achieve passivity with $V_{k,i}, y_{k,i}, \tau_i$
- Set $\tau_i = -\sum_{j \in N_i} (y_{k,i} - y_{k,j})$ for synchronization
Attitude dynamics of a satellite

\[\dot{q}_i = \frac{1}{2} \Xi_i(q_i) \omega_i, \]
\[\dot{\omega}_i = J_i^{-1} (u_i - \omega_i \times J \omega_i) \]

\[\Rightarrow \omega_i = \alpha_i = -2 \Xi^T_i q_i \]
\[\Rightarrow y_i = \omega_i - \alpha_i \]

Control design yields

\[u_i = (\alpha_i + y_i) \times J_i (\alpha_i + y_i) + J_i \left(\frac{1}{2} \Xi_i^T + \dot{\alpha}_i - \frac{1}{4} y_i + \tau_i \right) \]
\[\tau_i = - \sum_{j \in N_i} (y_i - y_j) \]
Nonholonomic Mobile Robots

- Unicycle dynamics in chained form

\[
\begin{align*}
\dot{\xi}_{0,i} &= v_i \\
\dot{\xi}_{1,i} &= v_i \xi_{2,i} \\
\dot{\xi}_{2,i} &= u_i \\
\Rightarrow v_i &= -\gamma \sum_{j \in N_i} (\xi_{0,i} - \xi_{0,j}) = -\gamma \eta
\end{align*}
\]

- Virtual control \(\xi_{2,i} = \alpha_i = k_1 \frac{\xi_{1,i}}{v_i} \) bounded and converging

- Second control input

\[
u_i = (2\gamma k_1 - 1) v_i \xi_{1,i} - \gamma k_1 v_i^2 y_i + \dot{\alpha}_i - k_2 \sum_{j \in N_i} (y_i - y_j)\]
Summary and Outlook

- Synchronization depends on group communication
- Graph Laplacian determines its properties
- Passivity enables synchronization for complex dynamic systems
- Design for synchronization of a general class of nonlinear systems
- Provably correctness by using Lyapunov analysis

Future Work

- Relax constraints on network topology
- Control design using relative information only
 [Scardovi & Sepulchre, 2008] → linear systems
- Heterogeneous systems
Summary and Outlook

- Synchronization depends on group communication
- Graph Laplacian determines its properties
- Passivity enables synchronization for complex dynamic systems
- Design for synchronization of a general class of nonlinear systems
- Provably correctness by using Lyapunov analysis

Future Work

- Relax constraints on network topology
- Control design using relative information only
 [Scardovi & Sepulchre, 2008] → linear systems
- Heterogeneous systems
Bibliography - Fundamentals

M. Arcak

N. Chopra and M.W. Spong

J.A. Fax and R.M. Murray

W. Ren and R.W. Beard
Distributed Consensus in Multi-vehicle Cooperative Control, Springer, 2007
F. Allgöwer, R. Blind, U. Münz and P. Wieland

L. Moreau

R. Olfati-Saber and R.M. Murray

L. Scardovi and R. Sepulchre