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Abstract. We present a novel multi-output Gaussian process model for multi-class
classification. We build on the formulation of Gaussian processes via convolution
of white Gaussian noise processes with a parameterized kernel and present a new
class of multi-output covariance functions. The latter allow for greater flexibility
in modelling relationships between outputs while being parsimonious with regard
to the number of model parameters. We apply the model to multi-class Gaussian
process classification using a sparse approximation based on the informative vector
framework and investigate, both analytically as well as empirically, a scenario where
our multi-class classifier performs better than combining independently trained bi-
nary classifiers.
Keywords: Gaussian processes, informative vector machine, multi-class classifica-
tion.

1 Introduction

Many real-world problems that use machine learning and statistical data
analysis techniques involve simultaneously predicting several dependent vari-
ables. Possible examples range from interpolation problems for values of spa-
tially dispersed temperature sensors to modelling of user ranking functions in
recommender system [Yu and Tresp, 2005] or the analysis of multi-spectral
satellite imagery [Pardo-Igúzquiza et al., 2006].

Recently several authors proposed methods to utilize and combine the
training data available for different tasks using Gaussian process models
in which dependencies between outputs are modelled using a hierarchical
Bayesian framework. [Lawrence and Platt, 2004] propose a multi-output Gaus-
sian process model called multi-task informative vector machine (MTIVM)
in which the sole dependence between different tasks comes from sharing
the parameters of the underlying covariance function. They obtain a point
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estimates for these parameters by optimizing the joint log-likelihood of the
training data from multiple tasks.

Multiple dependent Gaussian processes can also be obtained by assuming
that each process is a different transformation of the same set of underlying
independent Gaussian processes; several authors have recently pursued this
avenue to model dependent outputs. In [Boyle and Frean, 2005a] each depen-
dent Gaussian process is assumed to be a convolution of the same white noise
process with different kernel and in [Teh et al., 2005] a model with an inter-
mediate layer of latent Gaussian processes is introduced. Here, dependent
Gaussian processes are obtained as linear combinations of the independent
processes forming the intermediate layer.

In this paper we contribute to the development of multi-task Gaussian
process models in several ways. First, we present a way to systematically
derive covariance functions for multi-output Gaussian processes covering the
method proposed in [Boyle and Frean, 2005a] as a special case. Second, we
derive a classifier that captures the dependencies between different class la-
bels using such covariance functions. Our model is somewhat similar to the
MTIVM approach proposed in [Lawrence and Platt, 2004] where the authors
also have used IVM to select the most informative points across training
data for different tasks. However in our case the structure of the underlying
Gaussian process is richer and explicitly incorporates dependencies between
outputs.

The rest of the paper is organized as follows: We review the formulation
of Gaussian processes for multi-output data and derive covariance functions
for multiple dependent outputs in Section 2. Applications of this model to
artificial data as well as a real world dataset are presented in Section 3.
Finally, Section 4 presents a conclusion and an outlook on future work.

2 Multi-output Gaussian Processes

Gaussian processes are collections of random variables indexed by the el-
ements of an index set X such that the joint probability distribution of
any finite number of variables is multivariate Gaussian. It is conceptually
straightforward to model multi-task data with a single joint Gaussian pro-
cess by including the output number in an additional dimension of the index
set:

Definition 1. Given a set X , a Gaussian process (f(s))s∈S with index set
S = {1, 2, . . . , M} × X is called multi-output Gaussian process with input

space X and M outputs.

However, it is not obvious how to define a covariance function Cov :
S2 → R. This function should be positive definite on the set S, which means
that covariance matrix defined by Cov should be positive semi-definite for
any finite set of elements from the index set S. For independent outputs
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i, j ∈ {1, 2, . . . , M} we have that Cov((i,xa), (j,xb)) = 0 for all xa,xb ∈ X so
that in this case Cov is positive definite if and only if it is positive definite on
all Si = {(i,x)|x ∈ X}, i = 1, . . . , M . We devote the rest of this section to
the key question of how to consistently define Cov((i,xa), (j,xb)) in the more
general case where outputs are not independent. From now on we assume
that X = R

d for some d ∈ N.
For a given isotropic covariance function of single-output Gaussian pro-

cesses we can devise a covariance function for multi-output process in the
following way:

Proposition 1. Assume that C(τ) is an isotropic covariance function on

R
d, for any d ∈ N. Further, let S be an index set as in Definition 1 and the

function Cov : S2 → R be given by

Cov((i,xa), (j,xb)) =
vivj(2π)d/2

|Ai + Aj |1/2
C(
√

Qij(xa,xb)), (1)

with

Qij(xa,xb) = (xa − xb)
T Ai(Ai + Aj)

−1Aj(xa − xb), (2)

vi, vj ∈ R and arbitrary positive definite matrices Ai, i = 1, . . . , M . Then,

Cov is a positive definite function on S2.

The proof is given in the appendix and uses an argument similar to the
one used in [Paciorek, 2003] although in somewhat different context.

We refer to the single-output covariance function C as the generating
covariance function. The argument of C is a distance between xa and xb

induced by the scalar product that is defined by the positive definite matrix
BT B = Ai(Ai+Aj)

−1Aj . If all Ai and hence B are diagonal, we can interpret
the diagonal entries of B as automatic relevance determination hyperparam-
eters that determine the relative importance of different feature dimensions
for the cross-correlation between outputs.

Notice that the covariance function used in [Boyle and Frean, 2005a] which
is given by

Cov((i,xa), (j,xb)) =
vivj(2π)d/2

|Ai + Aj |1/2
e−

1
2
Qij(xa,xb) (3)

can be obtained from Proposition 1 using a squared exponential as the gen-
erating covariance function. Intuitively, all covariance functions which can
be obtained via Proposition 1 are scale mixtures of covariance function given
by (3).

Figure 2 shows several samples from multi-output Gaussian process with
3 outputs and covariance function generated by different single-output co-
variance functions (see [Rasmussen and Williams, 2006] for their definition
and properties).
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Fig. 1: Samples from 3-output MGP with covariance functions generated by (from
left to right) squared-exponential, Matérn (with ν = 3/2) and exponential single-
output covariance functions.

For a fixed output index i, the covariance function

Covi(xa,xb) = Cov((i,xa), (i,xb))

is of the same type as the generating covariance function C. Hence samples
from output i have the same continuity and differentiability properties as
samples from a Gaussian process with covariance function given by C. This
is a very valuable property since it allows us to choose suitable covariance
function for multi-output Gaussian process in a modular way using a priori

knowledge about the nature of the data source.

3 Experiments

In this section we would like to present two experiments on multi-class clas-
sification with dependent Gaussian processes. In each of the experiments we
first select a suitable Gaussian process prior by choosing a particular covari-
ance function and then find the point estimates for its hyperparameters by
optimizing the marginal likelihood w.r.t. the training data using the scaled
conjugate gradients method. We use the informative vector machine (IVM)
to compute sparse approximations of non-Gaussian likelihoods that arise in
the case of the probit classification noise model. Handling multiple outputs
by extending the index set of the Gaussian process allows us to use IVM
almost without any modifications. Since selection of informative vectors de-
pends on the values of hyperparameters and hyperparameters are optimized
using the set of informative vectors we do several interchanging iterations
of informative vectors selection and hyperparameter optimization. For more
details on IVM we refer to [Lawrence et al., 2005].

Toy dataset: In our toy example we choose an input set as X =
[−1, 1]× [−1, 1] and consider 4 binary classification tasks. Each of the regions
[0, 0.7]2, [−0.7, 0] × [0, 0.7], [−0.7, 0]2 and [0, 0.7] × [−0.7, 0] corresponds to
one binary classification task in which a point is classified positively if it is
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Fig. 2: Posterior probabilities for
each output. Plot corresponding to
output i shows p(yi(x∗) = 1|{Dj |j 6=
i}), where yi(x∗) is a classification la-
bel given to x∗ ∈ X by task i and Di

denotes training data for task i.
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Fig. 3: Training set with posi-
tive and negative labels of second
task and informative vectors chosen
by IVM for sparse approximation of
p(y2(x∗) = 1|D1,D3,D4)

inside the region and negatively otherwise. We generate a training set by
randomly choosing 500 points from X and labelling them accordingly. This
results in the total number of 2000 training points. The maximum num-
ber of informative vectors is set to 50 for each task. We use the sum of
two squared-exponential multi-output covariance functions given by (3) with
diagonal matrices Ai, i = 1, . . . , 4 resulting in 24 hyperparameters.

In Fig. 2 we visualize the dependencies between tasks learned by our
model. For each point and each of four tasks we plot the posterior prob-
ability of a point to have positive label obtained by conditioning the prior
distribution only on the training points from other three tasks. Such poste-
rior is equal to prior if there are no dependencies between tasks. In Fig. 3
the informative vectors are shown which were selected from the training sets
of first, third, fourth tasks for the computation of posterior of second task.
Notice how IVM selects points along the separation boundary of each tasks.

We conducted other experiments similar to the one described above, in
particular one in which we chose different training points for each task. Fur-
ther, we also used covariance function in which additional offset hyperparam-
eters were introduced so that instead of learning the anti-correlations between
outputs the model was able to learn correlations between one output and a
shifted version of the other. In all these experiments we were able to learn
the dependencies between tasks.
Text Classification: In our second experiment we take the well known

Reuters21578 text categorization dataset. After initial preprocessing the vo-
cabulary contains 12113 terms. The dimensionality of the documents is then
further reduced to 50 using latent semantic analysis. From the 10377 avail-
able documents we choose 2500 documents for training and use the rest for
testing.
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Fig. 4: Precision/recall curves for each category and independent and multi-output
classifiers. Plots (from left to right) correspond to 50, 70, 100, and 500 informative
vectors chosen by IVM.

We choose two categories of documents with labels “money-fx” and “trade”.
The total number of positive documents for each of the two categories equals
684 and 514 respectively, from which 154 and 113 were randomly selected in
the training set. The two categories are not mutually exclusive, the dataset
contains 46 documents included in both categories simultaneously. For each
of the categories we train an independent Gaussian process classifier with
squared exponential covariance function and automatic relevance determina-
tion hyperparameters which control the influence of each input dimension on
the classification outcome. This results in the total of 102 hyperparameters
for both classes. Additionally we also train a 2-output Gaussian process clas-
sifier with covariance function given by equation (3) and diagonal matrices
A1, A2 so that the multi-output model has the same number of 102 hyperpa-
rameters. In order to estimate the hyperparameters reliably we select 1000
informative vectors at each iteration of the hyperparameter optimization.

On the Fig. 4 we show the precision/recall curves for classifiers obtained
by setting the number of informative vectors selected by IVM to different val-
ues. The multi-output classifier is significantly more tolerant to small number
of informative vectors than independent classifiers. We have compared the
number of informative vectors with positive labels to the total number of
informative vectors selected by IVM from the training set of each class and
found that for independent classifiers their ratio is typically close to 0.5. For
multi-output classifier this ratio is higher with number of positively labelled
samples dominating in the total number of selected informative vectors (ratios
are typically around 0.75 - 0.8). We suppose that in the case of multi-output
classifier the negative training points are shared between the tasks which al-
lows each classifier to select more positive training points. This could be the
reason for higher generalization performance of multi-output classifier when
the number of informative vectors is kept small.
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4 Conclusion

In this paper we have presented a multi-class classifier which uses dependent
Gaussian processes in order to represent relations between different learning
tasks. We have demonstrated that such classifier can learn the relationships
between different classification tasks and utilize them in order to improve
generalization performance in certain special cases. We have also shown that
flexible modelling of prior distribution via choice of appropriate covariance
functions can be preserved in multi-output case. In the future we plan to
compare the multi-output models with different covariance functions and
also to apply our model to a broader range of problems.

Acknowledgements: Mykhaylo Andriluka gratefully acknowledges
the scholarship provided by the DFG research training group “Cooperative,
Adaptive and Responsive Monitoring in Mixed Mode Environments”. The
authors are also very thankful to Neil Lawrence for making his IVM code
available online.

A Proof of Proposition 1

Since C is positive definite, isotropic on R
d, for any d ∈ N, we can apply

Schoenberg’s theorem [Schoenberg, 1938] which states that there is a finite
measure µ ≥ 0, such that

C(τ) =

∫

R+

exp(−τ2s)dµ(s),

and therefore we have

Cov((i,xa), (j,xb)) =
vivj(2π)d/2

|Ai + Aj |1/2
C(
√

Qij(xa,xb))

=

∫

R+

vivj(2π)d/2

|Ai + Aj |1/2
exp(−Qij(xa,xb)s)dµ(s).

Let exponential kernel ki with parameter vi ∈ R and positive-definite matrix
Ai be given by

ki(x) = vi exp(−
1

2
xT Aix).

In [Boyle and Frean, 2005b] it is shown, that

∫

X

ki(xa − u)kj(xb − u)du =
vivj(2π)d/2

|Ai + Aj |1/2
exp(−

1

2
Qij(xa − xb)).

For exponential kernel given by

ks
i (x) = (2s)d/4vi exp(−

1

2
xT (2sAi)x)
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we obtain
∫

X

ks
i (xa − u)ks

j (xb − u)du =
vivj(2π)d/2

|Ai + Aj |1/2
exp(−Qij(xa − xb)s).

It follows that

Cov((i,xa), (j,xb)) =

∫

R+

(∫

X

ks
i (u − xa)ks

j (u − xb)du

)

dµ(s) (4)

Now, consider a finite subset D = {s1, . . . , sN} of the index set S. We
write T(n) and xn for the task and the input of sn respectively such that
sn = (T(n),xn). Let Σ be the N ×N matrix with Σn,m = Cov(sn, sm), for
n, m = 1, . . . , N . Then, for any a ∈ R

N we have

aT Σa =

∫

R+

(

∫

X

N
∑

n=1

N
∑

m=1

anamks
T(n)(u − xn)ks

T(m)(u − xm)du

)

dµ(s)

=

∫

R+





∫

X

(

N
∑

n=1

anks
T(n)(u − xn)

)2

du



 dµ(s) ≥ 0

which completes the proof.
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