
Map-based Compressive Sensing Model
for Wireless Sensor Network Architecture,

A Starting Point

Mohammadreza Mahmudimanesh, Abdelmajid Khelil*, Nasser Yazdani

University of Tehran, Technical University of Darmstadt, University of Tehran
m.mahmoudi@ece.ut.ac.ir, khelil@informatik.tu-darmstadt.de, 

yazdani@ut.ac.ir

Abstract. Sub-Nyquist  sampling  techniques  for  Wireless  Sensor  Networks 
(WSN) are  gaining increasing  attention  as  an alternative method to  capture 
natural  events  with  desired  quality  while  minimizing  the  number  of  active 
sensor nodes. Among those techniques, Compressive Sensing (CS) approaches 
are of special interest, because of their mathematically concrete foundations and 
efficient implementations. We describe how the geometrical representation of 
the  sampling  problem can  influence  the  effectiveness  and  efficiency  of  CS 
algorithms.  In  this  paper  we  introduce  a  Map-based  model  which  exploits 
redundancy  attributes  of  signals  recorded from natural  events  to  achieve an 
optimal representation of the signal.
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1   Introduction

A Wireless Sensor Network (WSN) is an instance of a distributed sensing network 
with a field of sensor nodes. But a very important constraint, differentiates a WSN 
from other similar configurations of sensing networks.  WSN nodes usually have a 
very limited source of power. Every node must try to conserve as much energy as it 
can to extend the whole lifetime of the WSN. This energy is mostly consumed during 
sensing and multihop transport of the sensed data to a base station called the sink [2]. 
During the operation of a WSN usually a low quality of information (QoI) [11] is 
requested by the WSN user to make a decision about the occurrence of a specific 
event. Therefore, it is wiser to keep down as many nodes as possible to conserve more 
energy while  satisfying user's  needs [3].  The main responsibility  of  a  WSN is  to 
monitor the physical parameters of a natural operational environment (such as a desert 
and jungle).  One  attribute  of  signal  representation  of  natural  events  (such  as 
environment temperature and humidity) is that they mostly have very smooth changes 
and  gradients  over  a  plane.  Compressive  Sensing  (CS)  [4-7]  is  a  novel  sampling 
approach  which  tries  to  exploit  compressibility  of  signals  in  order  to  reduce  the 
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minimum  samples  required  to  reconstruct  the  whole  signal.  CS  offers  a 
mathematically concrete method to capture only m samples of all n available samples 
of a signal (where  m≪n ) and then exactly recover the original signal with an 
overwhelming  probability.  It  exploits  the  compressibility  attribute  of  a  signal  to 
wisely select only those samples which are important in signal reconstruction. We 
argue that based on the nature of environment and the geometrical  distribution of the 
specific signal, we can find an arrangement that maximizes CS recovery performance 
and hence improves its quality.

The remainder of this paper is organized as follows. Section 2 gives a general view 
of our system model that we use throughout this paper. in Section 3 we summarize the 
mathematical  basics  of  CS in  general  with special  attention  to  its  applications  in 
WSN. In Section 4, based on our formulations in Sections 3, we discuss how selecting 
a  suitable  geometrical  framework  can  improve  the  performance  of  compressive 
wireless  sampling  recovery.  Section  4  presents  an  evaluation  of  the  model,  and 
Section 5 refers to some related works. Finally, we conclude with a summary and a 
brief description of future works. 

2   System Model

Our WSN scenario consists of a network that is composed of  n stationary resource-
constraint sensor nodes (SN) and a static resource-rich sink. Commonly, WSNs are 
built utilizing hundreds to thousands of cheap SNs. For a WSN consisting of n SNs, 
there  are  n!  possible  vectors  of  size  n which  can  describe  the  environment  as 
reported by sensors, at any instance of time. Here we focus on the spatial sampling of 
the environment using the SNs at  a fixed instance of  time. The main idea of  our 
proposed model is to find a mapping between SNs and sensed vector elements, that 
results the most compressible signal vector. We will formally define compressibility  
in the next section, but informally one can think of a compressible vector, as a vector 
that may have redundant data.  The  n SNs sample the physical signal  f of interest, 
which we assume to be compressible. A data sample is characterized by the ID and 
the location of the SN as well as the sensor reading and its timestamp. We assume that 
SNs know their own geographic position. The clocks of SNs are synchronized, e.g., 
via GPS or any efficient  synchronization protocol [12]. Positioning information is 
required to find the optimal spatial sampling method.

3   Compressive Sensing: Mathematical Basics and applicability to 
WSN

Suppose a discrete signal f of n samples, which can be mathematically represented as 
a  discrete-time  n-dimensional  vector  signal  f ∈ℝn .  CS  is  interested  in  low-rate 
sampling, in  which the number  m of  available  measurements  is   smaller  than the 
dimension  n of signal  f .  The vector  f is in fact a discretely sampled version of a 
continuous signal of real environment. The sampling rate is either dictated by Nyquist 



sampling rate, or desired reconstruction resolution or quality. Therefore, when mn , 
we are indeed faced to a sub-Nyquist sampling situation. Reconstructing the actual 
signal  f ∈ℝn  from  its  sub-sampled  version  y∈ℝm  may  seem  infeasible.   CS 
promises that if the signal satisfies some preconditions, it can be accurately or even 
exactly recovered from fewer compressed samples.

Definition 1: Sensing basis Φ is the basis in which signal is discretely represented. 
The  classical  case  is  when  the  sampling  basis  is  delta  Dirac  waveforms, 
k t  = t−k   that results in signal vector y consisting of  samples yk = 〈 f ,k 〉 , 
k = 1, , n .

Definition 2: Sensing matrix is an m×n matrix A which is used to select an under-
sampled  edition  of  signal  f ∈ℝn ,  namely  y∈ℝm ,  by  the  matrix  multiplication: 
y = A f .

3.1   Sparse and Compressible Signals

Suppose we have a vector  f ∈ℝn  which we expand it in an orthonormal basis (such 
as a wavelet or Fourier basis) as follows:

f t  =∑
k=1

n

x kk t   (1)

where  x is  the coefficients  vector  under  Ψ-transform of   f ,  x k = 〈 f ,k 〉 .  More 
conveniently we can express  f as Ψx, where Ψ is the n×n transformation matrix with 
[1,2, ,n]  as columns. For example if we take Fourier basis as Ψ-basis, then 
k t  = n−1 /2e i2 k t /n  and x is the Fourier transform of f. Note that because we deal 

with  time-discrete  signals,  t is  limited  only to  integral  values   between  1  and  n, 
t∈{1,... , n} . Therefore, k t   determines the n items of the k-th column of matrix 

Ψ, by substituting t by 1,2, ... , n.

Definition 3: Representation basis Ψ is the basis in which the signal is transformed 
and represented for final storage or communication purposes. It can also be referred 
as  Ψ-domain. The final purpose, is demanded by the specific application of signal 
sampling,  compression,  storage  and  recovery.  For  example  wavelet-domain  is  a 
suitable  Ψ-domain for image compression.

Definition 4: S-Sparse vector is a vector with only S nonzero items. We also call a 
signal f, S-Sparse, if its representation (in  Ψ) is a  S-Sparse vector.

Definition 5: Compressible Signal is a signal whose representation vector has many 
small (near zero) items and only a few relatively large and meaningful items.



In general for a vector v of size n, we define vS as a S-sparse version of v by setting 
n−S  items of v to zero. By selecting a well-chosen S, the S-sparse vector fS can be 

extracted  from  compressible  signal  f while  maintaining  the  reconstruction  error 
bellow  a  certain  level.  Hereafter,  we  may  use  “sparsity”  and  “compressibility” 
interchangeably. In the ongoing sections, sometimes by “sparsity” we mean that many 
elements of vector representation of signal are so small (near zero compared to other 
elements of vector), that we can easily neglect them.

3.2   Incoherent Sparse Sampling and Recovery

Suppose we are given a pair (Φ,Ψ) of orthonormal bases for vectors in ℝn . The first 
basis Φ is used for sampling the signal f in time or space domain, and the second is 
used to represent  f  in frequency domain. We define coherence between these two 
bases as follows:

Definition  6:  Coherence. The  coherence  between  the  sensing  basis  Φ and  the 
representation (frequency) basis Ψ is defined as:

μ (Φ,Ψ) = nmax 〈k , j〉      over all    1 ≤ k, j ≤ n (2)

in other words the coherence represents the largest correlation value between any two 
elements of Φ and Ψ.

CS is mainly concerned with low coherence pairs of sampling and representation 
bases. If Φ is the canonical or spike basis of delta Dirac functions  (k t  = t−k  ), 
and  Ψ  is  the  Fourier  basis  ( k t  = n−1 /2e i2 k t /n ),  then  it  can  be  shown  that 
μ Φ ,Ψ =1  and we have maximal incoherence. The interesting part of CS theory is 

that  if  we  even  select  an  orthobasis  Φ  uniformly  at  random,   then  with  high 
probability, the coherence between Φ and Ψ is about 2 log n . Random waveforms 
with independent identically distributed (i.i.d.) entries, also have a very low coherence 
with any fixed orthonormal representation bases Ψ.

Subsampling refers to sampling less than all available measurement. In WSN, this 
means that among all available n sensor nodes, we only observe a subset of all nodes 
and  collect  the  data  yk = 〈 f ,k 〉 ,  k  ∈ M where  M {1,...  ,  ⊂ n}  is  a  subset  of 
cardinality m < n. Note that our reduced sensing basis has fewer dimensions, i.e. the 
signal is projected over fewer basis vectors.

Recovering original signal from these incomplete set of samples is performed by
l1-norm minimization [10]; the proposed reconstruction  f *  is given by f *  = Ψx*, 
where x* is the solution to the following convex optimization program:

minimize∥x∥      subject to     yk = 〈k , Ψ x〉 ,   ∀ k∈M (3)

where x∈ℝn  and l1-norm is defined as ∥x∥l1  := Σi|xi|. In simple words, among all 
vectors in Ψ-domain which are consistent with the collected data, select the x* whose 



l1 norm is globally minimum. Then the recovered signal  f *  can be calculated from 
Ψx*.

Fundamental theorem of CS: Suppose that the Ψ transform x of  f in the Ψ-domain 
is S-sparse. If we select m measurements in the Φ-domain uniformly at random so that

m ≥ C · μ2 (Φ,Ψ) · S · log n (4)

for some positive constant C, then the solution to the optimization problem (3) can 
accurately or even exactly recover the original signal f.

3.3   CS Advantages and its Application in WSN

The following results from above mathematical summary leads us to think of CS as a 
very interesting and useful tool for sub-Nyquist sensor sampling, specially for WSN 
sensor reporting:

1) The  smaller  the  coherence,  the  fewer  samples  are  needed,  hence  CS 
emphasizes on low coherence systems. The measurement matrix can be even 
random or noise-like, because any randomly generated orthonormal basis has 
low coherence with Ψ transformation matrices such as Fourier or wavelet.

2) The resulting undersampled signal suffers almost no information loss if only 
about any random set of m coefficients are captured. The number of captured 
samples  m may be far less than the signal dimensionality, if the coherence 
between sampling and representation bases is a small bounded value.

The CS theorem suggests a concrete and extremely efficient acquisition protocol: 
first sample the signal in an incoherent domain. Incoherence is the only perquisite; 
one can simply use random sampling. The sampling matrix needs not to be adaptive 
to  the  signal,  i.e.  this  random  subsampling  technique  can  apply  to  any  network 
topology and natural event recording. This makes CS to stand out as one of the best 
proposed  sub-Nyquist  sampling  techniques  for  WSN.  But  as  we  see  in  the  next 
section, we can even better utilize CS by considering geometrical  attributes of the 
WSN environment.

4   CS-oriented Map-based (CSM) architecture

Mapping is the core of the CSM model that reorders the vector signal elements in a 
way  that  maximizes  CS  recovery  performance.  In  other  words,  mapping  is  the 
preparatory  phase  prior  to  CS sampling  and  recovery  that  prepares  an  alternative 
representation of sampling and recovery problem. We define mapping in an abstract 
way that assigns each element of signal vector f one and only one sensed value of the 
set of SNs readings. In comparison to other Map-based models for WSNs, our model 
is more abstract and general [9].



Definition 7:  Mapping function M is  a  one-to-one function from  {1,2,... , n}  to 
{1,2,... , n} that  defines  a  mapping  between  sensor  readings  and  signal  vector 

elements :

∀ k∈{1,... , n} ,    f k = sM k  (5)

in which s is the vector of sensor readings arranged by SN identifier (ID) indexes.
As an example, suppose that s is the sensor readings  vector ordered by sensor IDs 

of  3  sensors:  (sensor  1,  sensed value  13),  (sensor  2,  sensed value  11),  (sensor  3, 
sensed value 10). Then s = 13,11,10 . Now we define the mapping function M as: 
M 1=2, M 2=1, M 3 =3 .  The resulting signal  vector  f under  mapping  M is 
f = s2, s1, s3 = 11,13,10 .

Mapping  gives  us  the  flexibility  to  choose  a  more  efficient  view  of  the 
environment. To show that why this flexibility is required, first we need to analyze 
the fundamental theorem of CS. For a fixed setup of a WSN in CSM model with N 
sensor nodes that uses Φ and Ψ as its sampling and representation bases, we find that 
μ2(Φ,Ψ) and log n  are constants. Then (4) is reduced to the following linear equation:

m ≥ C0 S (6)

where C0 = C · μ2 (Φ,Ψ) · log n. Then when all other parameters are fixed (which is of 
course so, after WSN is deployed), the minimum number of required random samples 
to recover the vector f depends only on the sparsity of the  Ψ-transform of  f. Note that 
the final recovery is done after applying the inverse mapping  M −1  to vector  f and 
assigning the recovered values to corresponding SNs.

In  this  model,  a  centralized  or  distributed  processing  entity  is  responsible  for 
finding the best representation of the world with the most benefit. By representation 
we mean the mapping  M, and benefit is in fact the sparsity (or compressibility) of 
vector f under mapping M. Here we don't try to present an algorithm to find the most 
beneficial  mapping.  Proposing  an  efficient  algorithm  can  be  another  challenging 
topic, and can be even specialized for specific operational environments. In this paper 
we only try to show that WSNs that use CS approaches and exploit the geometrical 
properties of their operational environment can reach better CS recovery performance. 
This  emphasizes  the  importance  of  considering  Map-based  WSN  models  in 
compressive wireless sensing (CWS) [1]. Next section presents a simple evaluation 
that runs a trivial exhaustive “efficient mapping” search algorithm to find the optimal 
mapping.

5   Evaluation of CSM with an Exhaustive Algorithm

Figures 1.a and 2.a show the actual environment in which our test sensor network will 
operate. In our tests, the environment is the same, but in each test we have randomly 
distributed the SNs over the operational area. The WSN consists of SNs that capture 
the temperature at different nodes of a natural area – such as a forest. In practice, such 



an image doesn't exist prior to sampling. In fact this figure is the ideal target of our 
WSN.  We are going to apply CS sampling and recovery algorithms to this sensor 
network.

Our CS sampling method, selects randomly m of n sensor readings. Therefore we 
can even imagine of other  n−m  sensors, being inactive. This is the  situation that 
may  happen  in  the  case  of  sleep-scheduling  energy  preservation  [2].  In  fact  the 
measurement  matrix  used  in  our  test,  was  a  simple  m×n  0-1  matrix,  that  was 
constructed by randomly selecting  m rows of  I n×n . The  Ψ-domain is the classical 
Fourier-domain, i.e. matrix Ψ is the inverse discrete Fourier transform matrix (IDFT). 
We have measured the quality of recovered vector, by computing the mean square 
error (MSE) between recovered and original vector. Because of the random nature of 
the tests, we ran each test for every WSN consisting of randomly distributed SNs, for 
one hundred times, and then averaged MSE of each run over all 100 results.

We evaluated and compared two sampling approaches:
a) In the first method we sample the nodes in a raster-like fashion from top to 

bottom and from left to right.
b) In  the  second  method,  we  use  the  knowledge  about  the  current  actual 

temperature map. We examine SNs reported values and try to arrange them 
in a vector that  is  most compressible.  This requires that for  any possible 
mapping M, we reorder the sensor readings according to M, and compute the 
sparsity  of  its  Ψ transform.  The  optimal  mapping  M *  is  the  one  that 
generates the most compressible representation of vector f .

We don't  try to invent an efficient algorithm that  finds the optimal mapping in 
reasonable  amount  of  time.  We used  a  trivial  exhaustive  algorithm that  searches 
among all n!  possible mappings and chooses the most optimal one. Because of the 
exhaustive search algorithm inefficiency, we tried the evaluation for  a sensor network 
of only 10 SNs – that is n = 10.
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Fig.  1 (a) Randomly distributed SNs of 
the first test.
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Fig. 1 (b) Average MSE for different cardinalities 
of randomly selected active sensor nodes..
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Fig. 2 (a) Randomly distributed SNs of 
the second test..
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Fig. 2 (b) Average MSE for different cardinalities 
of randomly selected active sensor nodes..

Figures 1 and 2 depict two runs of our tests for two different positioning of SNs. In 
each of the figure pairs, Figure a shows the specific positioning of SNs in the test run, 
and Figure b shows a chart with the corresponding test results. In each of these two 
sample charts, the dashed line with circle markings determines the average MSE over 
all 100 CS recoveries of randomly sampled data using first sampling approach (a). 
Because of random nature of CS sampling, we perform the recovery procedure, one 
hundred times for each m in every test, and then take the average MSE as the actual 
MSE of that test. The dashed line with square markings shows averaged MSE using 
second sampling approach (b). For each simulated WSN, we run CS sampling and 
recovery for different number of active SNs. Because for this case,  m3  can not 
give us a meaningful result, we started m from 3 to n=10. As expected, by increasing 
the number of  active  SNs,  MSE decreases  and we have more accurate  recovered 
signal vectors.

As  we  were  expecting,  the  sampling  strategy  that  tries  to  achieve  the  most 
compressible  vector  representation  of  environment  signal,  leads  to  lower  MSE. 
However there are some anomalies for some m's, but in most cases, MSE of the tests 
based on sampling method (b) is lower than that of (a). The anomalies may occur 
because of randomness nature of problem, or small number of SNs. More satisfying 
tests can  be  performed using more  SNs.  But  as  we tested  for  some other  testing 
WSNs, a similar behavior has been observed.

6   Related Work

There is a growing set of literature about specific uses of CS in WSNs, which try to 
model the WSN to fit the CS framework. Among them Compressive Wireless Sensing 
(CWS) [1]  can be assumed to be pioneering work.  Some other  early papers  have 
adapted  CS for  WSN and proposed  concrete  and  efficient  CS models  for  WSNs 
[13,14].  CWS methods  are  also  tightly  related to  data  compression  techniques  in 



WSN [15-18].  But  CWS has  more  practical  results,  as  it  promises  efficient  data 
acquisition protocol for distributed sensor networks with high cost of sampling.

Map-based World Model (MWM) for WSN refers to a generalized framework of 
WSN modelling, that views the world model of a WSN beyond a simple distributed 
sensing system [8]. As an improvement to previously proposed WSN design models, 
it also considers the topology of WSN nodes and specific geometrical distribution of 
the desired signal. Map-based models can be well adopted to exploit this attribute of 
natural  event recording. By defining a suitable mapping that  gives  us a  vector  of 
signal samples with sparsest frequency-domain representation, we can improve the 
performance  of  CS  signal  reconstruction.  The  mapping  procedure,  that  we  have 
proposed in this work, is rather abstract and more general than MWM, but follows 
similar ideas.

There are also another set of proposed data acquisition techniques which specially 
try to exploit the spatial correlation of SNs reportings [19-21]. One can put all series 
of work under a more general field of study, that deals with distributed sampling in a 
relatively  error-prone  and  resource-constrained  network  architecture.  In  such 
situations, because of some information loss, we try to reconstruct the signal from a 
fewer number of available samples [22-24].

7   Conclusion and Future Work

In this paper, we have introduced a new approach to signal acquisition in  WSN. We 
have  stated  that  selecting  a  suitable  geometric  framework  can  utilize  better  the 
smoothness  attribute of  natural  signals.  By exploiting the  spacial  attributes  of  the 
operational environment, a more compressible vector view of environment signal can 
be  represented.  This  affects  an  essential  factor  of  Compressive  Sensing  (CS) 
techniques  performance,  called the  sparsity of  signal  in  representation basis.  The 
sparser or more compressible the representation of a signal, the fewer samples needed 
to be captured for signal reconstruction using CS algorithms.

However,  we  didn't  try  to  derive  an  efficient  algorithm  to  find  the  optimal 
mapping, but presented a test on a small scale WSN, which shows that the approach 
that follows our CS-oriented Map-based (CSM) model, can achieve better results. The 
lack of an efficient optimal map finding algorithm, limits us to try the model on a 
WSN consisting of more SNs. Deriving such an efficient algorithm can be a future 
challenge. But for this small-scale testing WSN, number of tries are high enough to 
fade away the effect of random sampling.
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